Search results for "Charge radius"

showing 10 items of 92 documents

Rho resonance, timelike pion form factor, and implications for lattice studies of the hadronic vacuum polarization

2020

We study isospin-1 P-wave ππ scattering in lattice QCD with two flavors of O(a) improved Wilson fermions. For pion masses ranging from mπ=265 MeV to mπ=437 MeV, we determine the energy spectrum in the center-of-mass frame and in three moving frames. We obtain the scattering phase shifts using Lüscher’s finite-volume quantization condition. Fitting the dependence of the phase shifts on the scattering momentum to a Breit-Wigner form allows us to determine the corresponding ρ mass mρ and gρππ coupling. By combining the scattering phase shifts with the decay matrix element of the vector current, we calculate the timelike pion form factor, Fπ, and compare the results to the Gounaris-Sakurai repr…

1 [isospin]Particle physicsdecay constant [rho(770)]High Energy Physics::Latticeclover [fermion]energy spectrumFOS: Physical sciencesWilson [quark]01 natural sciencesphase shiftHigh Energy Physics - LatticePionvector [correlation function]Charge radius0103 physical sciencesmagnetic moment [muon]quantum chromodynamicsmass [rho(770)]hadronic [vacuum polarization]ddc:530Vacuum polarizationflavor: 2 [quark]010306 general physicsnumerical calculationscharge radius [pi]PhysicsMuonAnomalous magnetic dipole moment010308 nuclear & particles physicsScatteringHigh Energy Physics - Lattice (hep-lat)scatteringlattice field theoryLattice QCDFermionBreit-Wignermass dependence [quark]form factor [pi]effect [finite size]vector [current]quantizationPhysical Review D
researchProduct

Evidence of a sudden increase in the nuclear size of proton-rich silver-96

2021

Understanding the evolution of the nuclear charge radius is one of the long-standing challenges for nuclear theory. Recently, density functional theory calculations utilizing Fayans functionals have successfully reproduced the charge radii of a variety of exotic isotopes. However, difficulties in the isotope production have hindered testing these models in the immediate region of the nuclear chart below the heaviest self-conjugate doubly-magic nucleus 100Sn, where the near-equal number of protons (Z) and neutrons (N) lead to enhanced neutron-proton pairing. Here, we present an optical excursion into this region by crossing the N = 50 magic neutron number in the silver isotopic chain with th…

CHARGE RADIIEFFICIENCYProtonScienceSYMMETRYNuclear TheoryGeneral Physics and AstronomyIONIZATION SPECTROSCOPY[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyEffective nuclear chargeArticleNuclear physicsCharge radiusMOMENTS0103 physical sciencesexperimental nuclear physicsNeutronNuclear Physics - ExperimentPhysics::Atomic PhysicsBETA-DECAYExperimental nuclear physics010306 general physicsLASER SPECTROSCOPYNuclear ExperimentPhysicsRESONANCE IONIZATIONisotoopitMultidisciplinaryScience & TechnologyIsotope010308 nuclear & particles physicsQGeneral ChemistryRadiusION-SOURCEMultidisciplinary SciencesTheoretical nuclear physicsNeutron numbertheoretical nuclear physicsScience & Technology - Other TopicsISOTOPESDensity functional theoryydinfysiikka
researchProduct

Proton-neutron pairing correlations in the self-conjugate nucleus 42Sc

2021

Collinear laser spectroscopy of the N=Z=21 self-conjugate nucleus 42Sc has been performed at the JYFL IGISOL IV facility in order to determine the change in nuclear mean-square charge radius between the Iπ=0+ ground state and the Iπ=7+ isomer via the measurement of the 42g,42mSc isomer shift. New multi-configurational Dirac-Fock calculations for the atomic mass shift and field shift factors have enabled a recalibration of the charge radii of the 42−46Sc isotopes which were measured previously. While consistent with the treatment of proton-neutron, proton-proton and neutron-neutron pairing on an equal footing, the reduction in size for the isomer is observed to be of a significantly larger m…

CHARGE RADIINuclear and High Energy PhysicsProtonCollinear laser spectroscopyQC1-999spektroskopiaNuclear TheoryFOS: Physical sciencesAstronomy & Astrophysicsnucl-ex01 natural sciencesPhysics Particles & FieldsCharge radius0103 physical sciencesPhysics::Atomic and Molecular Clustersddc:530NeutronNuclear Physics - ExperimentNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentNuclear ExperimentPhysicsisotoopitScience & TechnologyIsotopeMagnetic moment010308 nuclear & particles physicsPhysicsProton-neutron pairingTABLEHyperfine structure and isotope shiftAtomic mass3. Good healthCharge radiusPhysics NuclearPairingPhysical SciencesSHELL-MODELAtomic physicsydinfysiikkaGround stateskandiumPhysics Letters B
researchProduct

Isotope shifts in natural cerium

2003

High resolution crossed beam resonance fluorescence laser spectroscopy has been performed on an atomic beam of naturally occurring cerium, and isotope shifts have been measured in several transitions. Changes in mean square charge radius, δ〈r 2〉, have been extracted using the King plot technique and show the characteristic increase at the N = 82 neutron shell closure. The measurements form the basis for further investigations of radioactive isotopes and isomers on both sides of the shell closure.

CeriumMaterials scienceResonance fluorescencechemistryIsotopeCharge radiusPhysics::Atomic and Molecular ClustersShell (structure)chemistry.chemical_elementNeutronAtomic physicsSpectroscopyBeam (structure)
researchProduct

Initial state radiation experiment at MAMI

2014

In an attempt to contribute further insight into the discrepancy between the Lamb shift and elastic scattering determinations of the proton charge radius, a new experiment at MAMI is underway, aimed at measuring proton form-factors at very low momentum transfers by using a new technique based on initial state radiation. This paper reports on the conclusions of the pilot measurement performed in 2010, whose main goal was to check the feasibility of the proposed experiment and to recognize and overcome any obstacles before running the full experiment. The modifications to the experimental apparatus are then explained which significantly improved the quality of data collected in the full scale…

Elastic scatteringPhysicsProtonPhysicsQC1-999Full scaleRadiationLamb shiftNuclear physicsMomentumCharge radiusState (computer science)Statistical physicsElectron Scattering; MAMI; Proton Charge RadiusEPJ Web of Conferences
researchProduct

The next generation of laser spectroscopy experiments using light muonic atoms

2018

Precision spectroscopy of light muonic atoms provides unique information about the atomic and nuclear structure of these systems and thus represents a way to access fundamental interactions, properties and constants. One application comprises the determination of absolute nuclear charge radii with unprecedented accuracy from measurements of the 2S - 2P Lamb shift. Here, we review recent results of nuclear charge radii extracted from muonic hydrogen and helium spectroscopy and present experiment proposals to access light muonic atoms with Z ≥ 3. In addition, our approaches towards a precise measurement of the Zemach radii in muonic hydrogen (μp) and helium (μ 3He+) are discussed. These resul…

HistoryAtomic Physics (physics.atom-ph)measurement methodschemistry.chemical_elementFOS: Physical sciences01 natural sciencesEffective nuclear chargeEducationLamb shiftPhysics - Atomic Physicshydrogen: muonic atom0103 physical sciencesPhysics::Atomic and Molecular ClustersPhysics::Atomic Physics010306 general physicsSpectroscopyHeliumExotic atomPhysics[PHYS]Physics [physics]010308 nuclear & particles physicsPrecision spectroscopyhelium: muonic atomnucleusNuclear structureFundamental interaction[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]Computer Science ApplicationsLamb shiftlaserchemistrycharge radiusquantum electrodynamics: bound statespectrometerAtomic physicsexperimental results
researchProduct

Early onset of deformation in the neutron-deficient polonium isotopes

2012

In-source laser spectroscopy has been performed at CERN-ISOLDE with the RILIS laser ion source on Po-191-204,Po-206,Po-208-211,Po-216,Po-218. New information on the beta decay of Po-199 were extracted in the process, challenging previous results. Large-scale atomic calculations were performed to extract the changes in the mean-square charge radius delta from the isotope shifts. The delta for the even-A isotopes reveal a large deviation from the spherical droplet model for N < 116.

HistoryIsotopeChemistrychemistry.chemical_elementLaserIon sourceComputer Science ApplicationsEducationlaw.inventionlawCharge radiusNeutronPhysics::Atomic PhysicsDeformation (engineering)Atomic physicsNuclear ExperimentSpectroscopyPoloniumJournal of Physics: Conference Series
researchProduct

Deuteron charge radius and Rydberg constant from spectroscopy data in atomic deuterium

2017

We give a pedagogical description of the method to extract the charge radii and Rydberg constant from laser spectroscopy in regular hydrogen (H) and deuterium (D) atoms, that is part of the CODATA least-squares adjustment (LSA) of the fundamental physical constants. We give a deuteron charge radius Rd from D spectroscopy alone of 2.1415(45) fm. This value is independent of the measurements that lead to the proton charge radius, and five times more accurate than the value found in the CODATA Adjustment 10. The improvement is due to the use of a value for the 1S-&gt;2S transition in atomic deuterium which can be inferred from published data or found in a PhD thesis.

HydrogenProtonAtomic Physics (physics.atom-ph)Physical constantFOS: Physical scienceschemistry.chemical_element[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences7. Clean energyPhysics - Atomic PhysicsRydberg constantCharge radius0103 physical sciences[ PHYS.PHYS.PHYS-GEN-PH ] Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]Physics::Atomic Physics[ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear Experiment (nucl-ex)010306 general physicsSpectroscopyNuclear ExperimentPhysicsproton radius010308 nuclear & particles physicsdeuteron radiusGeneral EngineeringRydberg constantCharge (physics)[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]3. Good healthchemistryDeuteriumAtomic physics
researchProduct

Nuclear moments and the change in the mean square charge radius of neutron deficient thallium isotopes

1992

The hyperfine structure, isotope and isomeric shifts in the atomic transition 6p 2 P 3/2−7s 2 S 1/2, λ=535 nm have been measured for theI=7 andI=2 states of190, 192, 194, 196Tl; theI=1/2 andI=9/2 states of191Tl and the I=7 isomer of188Tl. The thallium isotopes were prepared as fast atomic beams at the GSI on-line mass separator following fusion reactions and — in some cases — subsequentβ-decay. The nuclear dipole moments, electric quadrupole moments and the change in the nuclear mean square charge radius are evaluated. Theuu-isotopes show an isomeric shift which changes sign between192Tl and194Tl.

Isomeric shiftPhysicsNuclear and High Energy PhysicsDipoleIsotopeCharge radiusQuadrupoleNuclear fusionNeutronAtomic physicsHyperfine structureZeitschrift f�ur Physik A Hadrons and Nuclei
researchProduct

Resonance Ionization Mass Spectroscopy for Trace Analysis

1990

My first lecture at this Summer School on Applied Laser Spectroscopy dealt with the determination of nuclear ground-state properties, i.e. atomic mass M, the nuclear spin I, the magnetic dipole moment μ I, the spectroscopic quadrupole moment Q, and the changes in the mean-square charge radius δ(r2) A,A´ between isotopes with mass number A and A´. These quantities can be determined for stable, long-, or short-lived isotopes by mass spectrometry and optical spectroscopy. In the latter case, the hyperfine structure (HFS) and the volume effect of the isotope shift (IS) are determined in atomic levels or optical transitions. The state of the art mainly concerning short-lived nuclei is described …

Mass numberPhysicsCharge radiusInstrumental chemistryPhysics::Atomic PhysicsAtomic physicsThermal ionization mass spectrometryNuclear ExperimentSpectroscopyMass spectrometryHyperfine structureAtomic mass
researchProduct